Author: Sebastian Lührs


Create your own Jupyter CONDA-Kernel

Often the standard kernel do not provide all features you need for your work. This might be that certain modules are not loaded or packages are not installed. With your own kernel you can overcome that problem easily and define your own environment, in which you work.

This notebook shows you how you can build your own kernel for a conda environment.

Building your own Jupyter CONDA-kernel is a three step process

Download Minconda installer

  1. Download/Install Miniconda
    • Miniconda3.sh
  2. Create Conda Environment
    • conda create
  3. Create/Edit launch script for the Jupyter kernel
    • kernel.sh
  4. Create/Edit Jupyter kernel configuration
    • kernel.json


Selectable CONDA_TARGET_DIR path for the central conda installation, should be in the project filesystem

In [ ]:
export CONDA_TARGET_DIR=${HOME}/PROJECT_training2005/testdir/miniconda3
# in this example PROJECT_training2005 is a symlink to $PROJECT_training2005

Selectable CONDA_ENV name, will be used to specify the environment name

  • must be lowercase
In [ ]:

export CONDA_ENV=$(echo "${CONDA_ENV}" | awk '{print tolower($0)}')
echo ${CONDA_ENV} # double check

1. Download/Install Miniconda

Start here if you want to run the full installation. If you want to create another environment in an existing conda setup go to create environment. If you want to attach yourself to an existing environment go to create user kernel.

  • 1.1 - Download Minconda installer
In [ ]:
wget --output-document=$HOME/Miniconda3.sh https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
  • 1.2 - Create target directory
In [ ]:
mkdir -p ${CONDA_TARGET_DIR}
  • 1.3 - Install Miniconda
In [ ]:
bash $HOME/Miniconda3.sh -b -u -p ${CONDA_TARGET_DIR}
In [ ]:
${CONDA_TARGET_DIR}/bin/conda init bash
  • 1.4 - Disable automatic activation
In [ ]:
${CONDA_TARGET_DIR}/bin/conda config --set auto_activate_base false

2. Create conda environment

Create new conda environment. The following steps can be repeated if multiple environments should be created. If the Python version differ towards the external Python version, a mix of Conda modules and external modules will not be possible

In [ ]:
${CONDA_TARGET_DIR}/bin/conda create -n ${CONDA_ENV} -y python=3.6.8 ipykernel

3. Create/Edit launch script for the Jupyter kernel

  • 3.1 - Create kernel to allow access to the conda environment. Adapte module purge and PYTHONPATH according to the comments.
In [ ]:
echo '#!/bin/bash

# module purge # optional to disable the external environment, necessary, if python version is different
# Activate your Python virtual environment
source '"${CONDA_TARGET_DIR}"'/bin/activate '"${CONDA_ENV}"'
# Ensure python packages installed in conda are always prefered, not necessary if module purge is used
export PYTHONPATH=${CONDA_PREFIX}/lib/python3.6/site-packages:${PYTHONPATH}
exec python -m ipykernel $@' > ${CONDA_TARGET_DIR}/envs/${CONDA_ENV}/kernel.sh
In [ ]:
chmod +x ${CONDA_TARGET_DIR}/envs/${CONDA_ENV}/kernel.sh

4. Create/Edit Jupyter kernel configuration

  • 4.1 - Create user kernel, if you want to access the conda environment of a colleague, only these steps are necessary
In [ ]:
mkdir -p $HOME/.local/share/jupyter/kernels/conda_${CONDA_ENV}
  • 4.2 - Adjust kernel.json file
In [ ]:
echo '{
 "argv": [
 "display_name": "conda_'"${CONDA_ENV}"'",
 "language": "python"
}' > $HOME/.local/share/jupyter/kernels/conda_${CONDA_ENV}/kernel.json

Restart of JupyterLab might be necessary to see the kernel in the kernel selection overview.